G
Ingenieurmathematik Prüfung 1
18.Nov.2010
Zeit 90 Minuten, Reihenfolge beliebig, 8 Punkte pro Hauptaufgabe,
40 Pt. = N.6.
v = [2 ; 3]
die beiden Produkte (Skalarprodukt) s = v'*v und
(dyadisches Produkt)
Mv = v*v' an!
t = 0:pi/100:6*pi ; gh = 2; x = 2*sqrt(2)*cos(t + 5*pi/4) + 0 y = 2*sqrt(2)*sin(t + 5*pi/4) + 0 z = t*gh/(2*pi) plot3(x,y,z) axis equal hold on plot3([-2 -2 -2 -2 ],[-2 -2 -2 -2],[0 2 4 6],'ro') % + xz Ebene bei t+5*pi/4 = 2*pi, also bei t=3*pi/4 xe = 2*sqrt(2), ye = 0, ze = 3*pi/4*gh/(2*pi) % ze = 0.75 plot3([xe,xe,xe],[ye,ye,ye],[ze ze+2 ze+4],'mo') hold off
N = [0 2 0]'; E = [2 0 0]'; S = [0 -2 0]';
W = [-2 0 0]'; T = [0 0 2]'; B = [0 0 -2]';
MWT = (W+T)/2,MET = (E+T)/2
u = MWT-S, v = MET - S
No = cross(u,v)
en = No/norm(No)
dkrit = en'*S
dT = en'*T - dkrit
dN = en'*N - dkrit
MH = [0 0 1]'
dMH = en'*MH -dkrit
Oc = [S T N B S E T W B E N W S];
Cl = [S MWT MET S]
plot3(Oc(1,:),Oc(2,:),Oc(3,:),'k')
hold on ; axis equal
plot3(Cl(1,:),Cl(2,:),Cl(3,:),'r')
hold off
view(12,8)
MWT =
-1
0
1
MET =
1
0
1
u =
-1
2
1
v =
1
2
1
No =
0
2
-4
en =
0
0.4472
-0.8944
dkrit =
-0.8944
dT =
-0.8944
dN =
1.7889
MH =
0
0
1
dMH =
0
Qi = [3 5 5 3 ; 0 0 2 2 ; 1 1 1 1 ]
Tz = [1 0 -5; 0 1 0; 0 0 1]
Tb = [1 0 5; 0 1 0; 0 0 1]
R = [-1 0 0; 0 -1 0 ; 0 0 1]
M = [1 0 0; 0 -1 0 ; 0 0 1]
Ttot = M*Tb*R*Tz
Qz = Tz*Qi
Qzr = R*Qz
Qr = Tb * Qzr
Qf = M*Qr
stdhcaxis
plothclin(Qi,'g') ; plothclin(Qz,'b')
plothclin(Qzr,'m') ; plothclin(Qr,'r')
plothclin(Qf,'k') ; hold off
Qi =
3 5 5 3
0 0 2 2
1 1 1 1
Tz =
1 0 -5
0 1 0
0 0 1
Tb =
1 0 5
0 1 0
0 0 1
R =
-1 0 0
0 -1 0
0 0 1
M =
1 0 0
0 -1 0
0 0 1
Ttot =
-1 0 10
0 1 0
0 0 1
Qz =
-2 0 0 -2
0 0 2 2
1 1 1 1
Qzr =
2 0 0 2
0 0 -2 -2
1 1 1 1
Qr =
7 5 5 7
0 0 -2 -2
1 1 1 1
Qf =
7 5 5 7
0 0 2 2
1 1 1 1
A=[0 0 0]', B=[2 0 0]',
C=[2 2 0]', D=[0 2 0]',
E=[0 0 2]', F=[2 0 2]',
G=[2 2 2]', H=[0 2 2]',
MDH = (D+H)/2
uab = MDH - B
va = H - B
vb = G - B
wa = acosd(uab'*va/norm(uab)/norm(va))
wb = acosd(uab'*vb/norm(uab)/norm(vb))
MDH =
0
2
1
uab =
-2
2
1
va =
-2
2
2
vb =
0
2
2
wa =
15.7932
wb =
45.0000